BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris.
نویسندگان
چکیده
BACKGROUND AND AIMS The arabinogalactan protein (AGP) gene family is involved in plant reproduction. However, little is known about the function of individual AGP genes in pollen development and pollen tube growth. In this study, Brassica campestris male fertility 8 (BcMF8), a putative AGP-encoding gene previously found to be pollen specific in Chinese cabbage (B. campestris ssp. chinensis), was investigated. METHODS Real-time reverse transcription-PCR and in situ hybridization were used to analyse the expression pattern of BcMF8 in pistils. Prokaryotic expression and western blots were used to ensure that BcMF8 could encode a protein. Antisense RNA technology was applied to silence gene expression, and morphological and cytological approaches (e.g. scanning electron microscopy and transmission electron microscopy) were used to reveal abnormal phenotypes caused by gene silencing. KEY RESULTS The BcMF8 gene encoded a putative AGP protein that was located in the cell wall, and was expressed in pollen grains and pollen tubes. The functional interruption of BcMF8 by antisense RNA technology resulted in slipper-shaped and bilaterally sunken pollen with abnormal intine development and aperture formation. The inhibition of BcMF8 led to a decrease in the percentage of in vitro pollen germination. In pollen that did germinate, the pollen tubes were unstable, abnormally shaped and burst more frequently relative to controls, which corresponded to an in vivo arrest of pollen germination at the stigma surface and retarded pollen tube growth in the stylar transmitting tissues. CONCLUSIONS The phenotypic defects of antisense BcMF8 RNA lines (bcmf8) suggest a crucial function of BcMF8 in modulating the physical nature of the pollen wall and in helping in maintaining the integrity of the pollen tube wall matrix.
منابع مشابه
The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development
Brassica campestris Male Fertility 2 (BcMF2) is a putative polygalacturonase (PG) gene previously isolated from the flower bud of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis). This gene was found to be expressed specifically in tapetum and pollen after the tetrad stage of anther development. Antisense RNA technology was used to study the function o...
متن کاملBcMF26a and BcMF26b Are Duplicated Polygalacturonase Genes with Divergent Expression Patterns and Functions in Pollen Development and Pollen Tube Formation in Brassica campestris
Polygalacturonase (PG) is one of the cell wall hydrolytic enzymes involving in pectin degradation. A comparison of two highly conserved duplicated PG genes, namely, Brassica campestris Male Fertility 26a (BcMF26a) and BcMF26b, revealed the different features of their expression patterns and functions. We found that these two genes were orthologous genes of At4g33440, and they originated from a ...
متن کاملCharacterization of a pollen-specific agp1-like protein in Arabidopsis thaliana
Article history: Received on: 16/05/2016 Revised on: 10/06/2016 Accepted on: 20/06/2016 Available online: 05/11/2016 In plants, pollen tube germination occurs widely in flowering plants. In Arabidopsis thaliana, it has been reported ARABINOGALACTAN PROTEIN 1 (AGP1) plays an important role in pollen tube germination. The expression of arabinogalactan protein in Arabidopsis pollen tubes has been ...
متن کاملBcMF9, a novel polygalacturonase gene, is required for both Brassica campestris intine and exine formation.
BACKGROUND AND AIMS The polygalacturonase (PG) gene family has been found to be enriched in pollen of several species; however, little is currently known about the function of the PG gene in pollen development. To investigate the exact role that the PG gene has played in pollen development and about this family in general, one putative PG gene, Brassica campestris Male Fertility 9 (BcMF9), was ...
متن کاملEffects of Inhibitors of Protein Serine/Threonine Phosphatases on Pollination in Brassica.
We have examined the effect of the protein phosphatase inhibitors okadaic acid and microcystin on pollen-pistil interactions in Brassica. Inhibitor-treated flowers or floral buds were pollinated with untreated pollen and examined for pollen tube growth by fluorescence microscopy. Our results show that type 1 or type 2A serine/threonine phosphatases play a crucial role in the pollination respons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 113 5 شماره
صفحات -
تاریخ انتشار 2014